Estrogen and tamoxifen induce cytoskeletal remodeling and migration in endometrial cancer cells.
نویسندگان
چکیده
Much research effort has been directed toward understanding how estrogen [17beta-estradiol (E2)] regulates cell proliferation and motility through the rapid, direct activation of cytoplasmic signaling cascades (i.e. nongenomic signaling). Cell migration is critical to cancer cell invasion and metastasis and involves dynamic filamentous actin cytoskeletal remodeling and disassembly of focal adhesion sites. Although estrogen is recognized to induce cell migration in some model systems, very little information is available regarding the underlying pathways and potential influence of selective estrogen receptor modulators such as 4-hydroxytamoxifen on these processes. Using the human endometrial cancer cell lines Hec 1A and Hec 1B as model systems, we have investigated the effects of E2 and Tam on endometrial nongenomic signaling, cytoskeletal remodeling, and cell motility. Results indicate that both E2 and Tam triggered rapid activation of ERK1/2, c-Src, and focal adhesion kinase signaling pathways and filamentous actin cytoskeletal changes. These changes included dissolution of stress fibers, dynamic actin accumulation at the cell periphery, and formation of lamellipodia, filopodia, and membrane spikes. Longer treatments with either agent induced cell migration in wound healing and Boyden chamber assays. Agent-induced cytoskeletal remodeling and cell migration were blocked by a Src inhibitor. These findings define cytoskeletal remodeling and cell migration as processes regulated by E2 and 4-hydroxytamoxifen nongenomic signaling in endometrial cancer. This new information may serve as the foundation for the development of new clinical therapeutic strategies.
منابع مشابه
Estradiol and Tamoxifen Induce Cell Migration through GPR30 and Activation of Focal Adhesion Kinase (FAK) in Endometrial Cancers with Low or without Nuclear Estrogen Receptor α (ERα)
Estrogens and tamoxifen (an antiestrogen) exert their actions by activation of estrogen receptor (ER) through genomic and non-genomic mechanisms and are implicated in the development of endometrial cancer. Previous reports have demonstrated that estradiol and tamoxifen induce proliferation of human endometrial cancer cells through GPR30 (non-genomic ER) signaling pathway. Herein, we demonstrate...
متن کاملDifferential actions of estrogen and SERMs in regulation of the actin cytoskeleton of endometrial cells.
Estrogen and selective estrogen receptor modulators (SERMs) differentially impact endometrial cell function, however, the biological basis of these differences is not established. Deregulated cell adhesion to the extracellular matrix, cell movement and invasion are related to endometrial disorders, such as endometriosis or endometrial cancer. Remodeling of the actin cytoskeleton is required to ...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملThe Effects of Tamoxifen in Combination with Tranilast on CXCL12- CXCR4 Axis and Invasion in Breast Cancer Cell Lines
It has been reported that CXCL12 binding to CXCR4 induces several intracellular signaling pathways, and enhances survival, proliferation, and migration of malignant cells. Herein we examined the effects of anti-estrogen tamoxifen and anti-allergic tranilast drugs as a single or in combination on invasion by two in vitro invasion assays, wound-healing and matrigel invasion on MCF-7 and MDA-MB-23...
متن کاملCell Kinetic Study of Tamoxifen Treated MCF-7 and MDA-MB 468 Breast Cancer Cell Lines
Apoptosis could be a major mechanism of antitumor effect of tamoxifen. Therefore this study is designed to characterize the kinetic behavior of tamoxifen-induced apoptosis in the estrogen receptor positive (ER+) and negative (ER-) cell lines, MCF-7 and MDA-MB-468. Frequency of cell death was examined by trypan blue and acridine orange staining. Annexin V-Fluorescein/PI was used in flow cytometr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Endocrinology
دوره 147 3 شماره
صفحات -
تاریخ انتشار 2006